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ABSTRACT 
 

A wide range of machine learning techniques have been successfully applied to model different civil 
engineering systems. The application of support vector machine (SVM) to predict the ultimate shear 
strengths of reinforced concrete (RC) beams with transverse reinforcements is investigated in this 
paper. An SVM model is built trained and tested using the available test data of 175 RC beams 
collected from the technical literature. The data used in the SVM model are arranged in a format of 
nine input parameters that cover the cylinder concrete compressive strength, yield strength of the 
longitudinal and transverse reinforcing bars, the shear-span-to-effective-depth ratio, the span-to-
effective-depth ratio, beam’s cross-sectional dimensions, and the longitudinal and transverse 
reinforcement ratios. The relative performance of the SVMs shear strength predicted results were also 
compared to ACI building code and artificial neural network (ANNs) on the same data sets. 
Furthermore, the SVM shows good performance and it is proved to be competitive with ANN model 
and empirical solution from ACI-05. 
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ABSTRAK 

 
Secara global teknik machine learning telah sukses diterapkan dalam berbagai model dari teknik sipil. 
Dalam makalah ini dibahas mengenai aplikasi dari support vector machine (SVM) untuk memprediksi 
gaya geser batas pada balok beton bertulang dengan tulangan geser. Model SVM dibuat untuk melatih 
dan menguji dari 175 data balok beton bertulang dari berbagai sumber. Data digunakan untuk 
membentuk 9 buah parameter dalam model SVM yaitu jarak dari muka balok ke titik berat tulangan 
tekan, tegangan leleh tulangan utama dan tulangan geser, rasio panjang geser dan tinggi efektif balok, 
dimesi penampang balok, dan tulangan utama serta tulangan geser balok. Hasil dari prediksi SVM 
akan dibandingkan dengan metode lain yaitu artificial neural network (AANs) dan ACI Building 
Code pada dataset yang sama. Selanjutnya, SVM menunjukan hasil yang baik dan terbukti dapat 
digunakan selain AANs dan rumus empiris ACI Building Codes. 
 
Kata kunci : Support vector machine, Gaya geser, Beton bertulang. 

 

1. INTRODUCTION 

In designing a reinforced concrete (RC) beam, structural engineer must concern 

about the shear behavior of the RC beams. The shear failure of an RC beam is different from 

its flexural failure. In shear, the beam fails suddenly without warning and diagonal shear 

cracks are considerably wider than the flexural cracks. Shear failure is brittle and must be 

avoided in designing RC beams by providing the transverse reinforcement. 

There are some parameters that affect the shear strength of RC beams including 

material strength, shear-span-to-effective-depth ratio, amount of reinforcement, etc. These 
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parameters are used to predict shear strength of beams with an assumed form of empirical or 

analytical equation and are followed by a regression analysis using experimental data to 

determine unknown coefficients. But these equations in design codes do not accurately 

predict the shear strength of RC beams with transverse reinforcement and are also not easy-

to-use types of equations. 

This paper present the prediction of shear strength of RC beams with transverse 

reinforcement using support vector machine (SVM). The basic ideas underlying SVM are 

also reviewed in this paper, and its potential is demonstrated by applying the method on 

practical problems in civil engineering. In this study, the regression problems in SVM using 

support vector regression (SVR) will be used for modeling the experimental data. The results 

are then analyzed to determine the relative performance of SVM to that of artificial neural 

networks (ANNs) and the empirical shear design equations as given by American building 

code (ACI 318-05) on the same data sets. 

 

2. ULTIMATE SHEAR STRENGTH OF RC BEAMS 

The most shear design equations are derived from the equilibrium conditions of the 

simple 45o – truss theory proposed by Ritter and Morsch at the turn of the 20th century.  

These equations are in turn modified using statistical analysis to account for the 

effects of the flexure and the longitudinal reinforcement ratio on the shear strength of the RC 

beams.  

ACI building code (American Concrete Institute, 2005) is one of the building codes 

that adopted this concept. The equations simply estimate the shear strength of an RC beams 

as the superposition of shear strength due to concrete alone and shear reinforcement alone.  

However, the shear strength of RC beams predicted using these simple equations 

was found to be very conservative when compared to experimental observations. This was 

mainly because the equations were based on the assumption that there is no interaction 

between shear resisting mechanism. 

The experimental data for the shear strength are already collected from the literature 

(Mansour et. al., 2004). There are total 175 RC beams with shear reinforcement from 

different literatures are tested with one or two point loads acting symmetrically with respect 

to the centerline of the beam span.  

The data is shown in Table A1 in Appendix A. The beams have different support 

conditions simulating simple span, continuous span and fixed support conditions. During the 

collection stages, specimens that did not fail in shear were excluded from the database. 
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The important parameters that affect the shear strength of RC beams in this study 

are: 

1. Shear-span (a) 

2. Effective span of beam (L) and effective depth (d) of beam 

3. Width of web (bw) 

4. Material strength of concrete, flexural (longitudinal) reinforcement and shear 

(transverse) reinforcement (f’c, fyl, fyt) 

5. Reinforcement ratios of longitudinal steel and shear steel (ρl, ρt). 

 

3. SHEAR STRENGTH USING ACI BUILDING CODE 

For beams with transverse reinforcement, the ACI building code (American 

Concrete Institute, 2005), ACI 318-05 states that the nominal shear strength vn of RC beams 

is the amount of concrete shear strength vc and the transverse reinforcement vs  

n cv v v= + s          (1) 

where vc and vs are expressed as: 

' u
c c w c w

u

V dv V /b d 0.16 f 17.2ρ
M

⎛ ⎞
= = +⎜

⎝ ⎠
⎟      (2) 

        (3) s v yv w v yvv A f /b s ρ f= =

In the above equation bw is the breadth of beam, d is the effective depth of beam f’c is the 

cylinder concrete strength of concrete, ρw is the longitudinal tensile reinforcement ratio, Vu 

and Mu are the shear strength and moment at critical section respectively, Av is the area of 

vertical shear reinforcement, fyv is the yield stress of stirrups, s is the spacing of stirrups and 

ρv is the shear reinforcement ratio. The ACI 318-05 (American Concrete Institute, 2005) also 

states that the concrete shear contribution and the shear reinforcement contribution must not 

be taken greater than cf'0.3 and cf'0.66 respectively. 

 

4. ARTIFICIAL NEURAL NETWORKS (ANNs) 

The first AAN was invented in 1958 by psychologist Frank Rosenblatt. Called 

Perceptron, it was intended to model how the human brain processed visual data and learned 

to recognize objects. Other researchers have since used similar ANNs to study human 

cognition. Eventually, someone realized that in addition to providing insights into the 

functionality of the human brain, ANNs could be useful tools in their own right. Their 

pattern-matching and learning capabilities allowed them to address many problems that were 

76                                                  Jurnal Teknik Sipil  Volume 2 Nomor 2, Oktober 2006 : 74-147 
                                                     



difficult or impossible to solve by standard computational and statistical methods. By the late 

1980s, many real-world institutes were using ANNs for a variety of purposes. 

ANNs are composed of many interconected processing units. Each processing unit 

keeps some information locally, is able to perform some simple computations, and can have 

many inputs but can send only one output. The ANNs have the capability to respond to input 

stimuli and produce the corresponding response, and to adapt to the changing environment 

by learning from experience. Therefore, in order for researchers to use ANNs as a predictive 

tool, data must be used to train and test the model to check its successfulness (Mansour et. 

al., 2004). 

A key feature of neural networks is an iterative learning process in which data cases 

(rows) are presented to the network one at a time, and the weights associated with the input 

values are adjusted each time.  After all cases are presented, the process often starts over 

again. During this learning phase, the network learns by adjusting the weights so as to be 

able to predict the correct class label of input samples. Neural network learning is also 

referred to as "connectionist learning," due to connections between the units. Advantages of 

neural networks include their high tolerance to noisy data, as well as their ability to classify 

patterns on which they have not been trained. 

The most common neural network model is the multi-layer back-propagation neural 

networks (MBNNs) (Mansour et. al., 2004). Here the output values are compared with the 

correct answer to compute the value of some predefined error-function. By various 

techniques the error is then fed back through the network. Using this information, the 

algorithm adjusts the weights of each connection in order to reduce the value of the error 

function by some small amount. After repeating this process for a sufficiently large number 

of training cycles the network will usually converge to some state where the error of the 

calculations is small. In this case one says that the network has learned a certain target 

function. To adjust weights properly one applies a general method for non-linear 

optimization task that is called gradient descent. For this, the derivative of the error function 

with respect to the network weights is calculated and the weights are then changed such that 

the error decreases (thus going downhill on the surface of the error function). For this reason 

back-propagation can only be applied on networks with differentiable activation functions 

(Bishop, 1995). 
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Fig. 1. A Typical MBNN (Mansour et. al., 2004) 

 

The layout of the three-layer neural network used in this study is illustrated in Fig. 1. 

The network shown consists of an input layer with nine neurons, a hidden layer with three 

neurons, and an output layer with one neuron. The input layer neurons receive information 

from the outside environment and transmit them to the neurons of the hidden layer without 

performing any calculation. The hidden layer neurons then process the incoming information 

and extract useful features to reconstruct the mapping from the input space to the output 

space. Finally, the output layer neurons produce the network predictions to the outside 

world. 

 

 
Fig. 2. Typical Neuron in a Hidden Layer (Mansour. et al., 2004) 
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To better explain the ANN procedure, the ANN network shown in Fig. 2 is taken as 

an example. The error ‘‘E’’ between the computed value (denoted by Ok) and the target 

output (denoted by Tk) of the output layer is defined as 
n

2
k k

k 1

1E (O T
2 =

= −∑ )

k
⎟

k i

        (4) 

where 
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∑       (5) 

In the equation above, F( ) is the sigmoid function defined in Fig. 2, Ii is the input to neuron 

‘‘k’’ of the single output layer from neuron ‘‘i’’ of the hidden layer, and is the weight 

associated between neuron ‘‘i’’ of the hidden layer and neuron ‘‘k’’ of the output layer. Note 

that in the ANN model shown in Fig.1, only one output is used and thus the subscript ‘‘n’’ in 

Eq. (4) (summation sign) is equal to 1. Therefore, from the hidden layer to the output layer, 

the modification of weights is represented respectively by the following expression: 

k
iW

k
iΔW λδ I=          (6) 

where λ is the learning rate and δk = (Tk – Ok) F’ (Ii
k
iW ). From the input layer to the hidden 

layer, similar equations can also be written 

ij
k
i IλδΔW =          (7) 

where δj= Wkjδk F’ (Ii 
j

iW ). 

The training algorithm can be improved by adding momentum terms into the 

weights equations as shown below: 

( ) [ ]1)(tW(t)WγIλδ(t)W1tW k
i

k
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k
i

k
i −−++=+    (8) 

j j j j
i i k i i iW  (t 1) W (t) λδ I γ W (t) W (t 1)⎡ ⎤+ = + + − −⎣ ⎦     (9) 

where ‘‘t’’ denotes the learning cycle and ‘‘c’’ is the momentum factor. 

 

5. SUPPORT VECTOR MACHINE (SVM) 

The SVM is relatively new, the foundation of the subject of support vector machines 

(SVMs) has been developed principally by Vapnik and his collaborators, and the 

corresponding support vector (SV) devices are gaining popularity due to their many 

attractive features and promising empirical performance. It has demonstrated its good 

performance in classification (Osuna et. al., 1997; Belousov et. al., 2002), regression (Smola 

Predicting The Shear Strength of Reinforced Concrete Beams Using Support Vector Machine   79 
( Cindrawaty Lesmana ) 



and Schölkopf, 1998; Dibike et. al., 2001), and time series forecasting and prediction 

(Mukherjee et. al., 1997; Muller et. al., 1997; Tay and Cao, 2001; Kim, 2003; Thissen et. al., 

2003) in an efficient and stable way. 

SVM formulation embodies the structural risk minimization (SRM) principle, which 

has been shown to be superior to the more traditional empirical risk minimization (ERM) 

principle employed by many of the other modeling techniques (Osuna et. al., 1997; Gunn, 

1998). The SRM places an upper bound on the expected risk, as opposed to an ERM, which 

minimizes the error on the training data only. It is this difference that equips SVM with a 

greater ability to generalize compared to traditional neural network approaches. The SVM 

that will be used in this paper are ε - support vector regression (ε-SVR). 

ε-SVR (Schölkopf and Smola, 1998) is an applied regression problem by the 

introduction of an alternative loss function that is modified to include a distance measure 

(Smola, 1996). Considering the problem of approximating the set of data, {(x1,y1), … (xi,yi), 

x ∈ RN, y ∈ R} with a linear function as expressed below: 

( , ) .f x w xα = + b                 (10) 

where w and b = parameters. With the most general loss function with an ε - insensitive zone 

described as: 

( , )iy f x
ε

α ε− =  if ( , )iy f x α ε− ≤ ; 

( , )iy f x α−  otherwise                (11) 

 

The objective is now to find a function ( , )f x α  that has a most a derivation of ε  

from the actual observed targets yi for all the training data at the same time as flat as 

possible. In performing nonlinear regression we map the input vector x into a high-

dimensional feature space in which we then perform linear regression ( )f z . The optimal 

regression function for primal problem is given by minimizing the functional of empirical 

risk. 

(2

, , , 1

1min ( , )
2up down

m
up down

i i
w b i

Cw w
mξ ξ

τ ξ ξ ξ
=

= + +∑ )               (12) 

 

where C is a parameter chosen a priori and defining the cost of constraint violation; and up
iξ , 

 = slack variables representing upper and lower constraints on the outputs of the 

system (Fig. 3), as follows: 

down
iξ
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, up
i iy w z b iε ξ− − ≤ +   i = 1, 2, ….., m 

, down
i i iw z b y ε ξ+ − ≤ +  i = 1, 2, ….., m 

0up
iξ ≥  and                  (13) 0down

iξ ≥

 

The optimization problem can then be reformulated into an equivalent 

nonconstrained optimization problem using Lagrangian multiplier, and its solution is given 

by identifying the saddle point of the functional (Minoux, 1986). Lagrange function is 

constructed from both the objective function and the corresponding constraint by introducing 

a dual set of variables, as follows: 
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0iα ≥ , 0iβ ≥ ,  i = 1, 2, ….., m                (14)

  

where the iα  and iβ  are the Lagrange multiplier. From the saddle point condition that the 

partial derivatives of the Langrangian has to be minimized with respect to w, b, up
iξ  and 

 to vanish for optimality. Hence, we get the dual function as below: down
iξ
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Therefore, the dual optimization problem will be: 
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with respect to the constraints  
1

( ) 0 0 ,
m

i i i i
i

C
m

α β α β
=

− = ≤ ≤∑     for i = 1, 2, ….., m 

 

 
Fig. 3. Prespecified Accuracy and Slack Variable j in SV Regression,  

Adapted from Scholkopf (Scholkopf, 1997) 

 

Finding the solution of (Mansour, et. al., 2004) for real-world problem will usually 

require application of quadratic programming and numerical methods. Once solution of the 

coefficients iα  and iβ  are determined, the decision function can be found as: 

 ( )* *

1
( ) ( ) ,

m

new i i new i
i

*f x k xα β
=

⎡ ⎤x b= − +⎢ ⎥
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                (18) ( )* * *

1
( ) ,

m

m i i
i

b y k x xε α β
=

= − − −∑ m i

where α*, β* are the solution of the dual problem and ym and xm are corresponding to SVs 

data. By using a nonlinear mapping kernel K is used to map the data into higher dimensional 

feature space, where the linear regression is performed.  

 

6. ANN MODELS USED FOR PREDICTION OF SHEAR STRENGTH 

In this study, ANN model for prediction the ultimate shear strength of RC beams 

with stirrups is develop by using XLminer with a fully integrated add-in to Microsoft Excel. 

It provides a comprehensive set of analysis features based both on statistical and machine 

learning methods. A problem or a data set can be analyzed by several methods. It is usually a 

good idea to try different approaches, compare their results, and then choose a model that 

suits the problem well. XLMiner uses Excel primarily as an interface and platform. While 

Excel limits the user to 60,000 rows, XLMiner allows the user to sample from a much larger 

database, do the analysis on a statistically-valid sample, and, for supervised learning, score 

the results back out to the database.  
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Using artificial neural network prediction in XLminer requires the following input 

data: 

1. The error tolerance, which is set to 3% 

2. The maximum number of training cycles or epochs is 600. 

3. The total number of data that is 175 RC beams. In this study, the first 20% of the total 

data (already randomized in Excel) is used for testing and the remaining 80% for 

training. 

4. The number of input neurons is nine, the number of output neurons is one, and the 

number of hidden layer neurons is three. 

5. A learning rate (step size in gradient descent in Xlminer) and a momentum factor are 

equal to 0.4 and 0.2. In most of the simulations, it is found that one hidden layer and 

values of 0.4 for the learning rate and 0.2 for the momentum factor would lead to a 

minimum error. 

6. Nine variables are used as input parameters for the ANN model constructed: (1) f’c, (2) 

fyl, (3) fyt, (4) a/d, (5) bw, (6) d, (7) L/d, (8) ρl, (9) ρt. The output was selected as the 

ultimate shear strength (V/bwd) of the RC beam. 

7. Normalized the input data (subtracting the mean and dividing by the standard deviation) 

to ensure that the distance measure accords equal weight to each variable. Without 

normalization, the variable with the largest scale will dominate the measure. 

 

7. SVR MODELS USED FOR PREDICTION OF SHEAR STRENGTH 

In this study, a computer program a library for support vector machines (Libsvm) 

will be used to develop an SVM model for predicting the ultimate strength of RC beams with 

stirrups. SVMs task usually involves with training and testing data which consist of some 

data instances. Each instance in the training set contains one “target value” and several 

“attributes” (features). The goal of SVM is to produce a model which predicts target value of 

data instances in the testing set which are given only the attributes. The Libsvm program 

procedures: 

1. Features 

- The total number of data that is presented (in this case, 175 RC beams were 

considered). The computer program uses 80% of total data for training (140 RC 

beams) and the remaining 20% for testing (35 RC beams). 

- The nine variables of inputs are used for constructing the SVM model in this 

investigation are (1) f’c; (2) fyl; (3) fyt; (4) a/d; (5) bw; (6) d; (7) L/d; (8) ρl; (9) ρt. 
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- The one output in this study was selected as the ultimate shear strength (V/bwd) of 

the RC beam. 

- The input data are built using Ms. Excel (.xls) and imported to Matlab data (.mat). 

By using Matlab code, the data will be transferred to input format for Libsvm (.txt). 

2. Scaling. Scaling the data before applying SVM is very important. (Sarle, 1997 ; Part 2 of 

Neural Networks FAQ) explains why we scale data while using Neural Networks, and 

most of considerations also apply to SVM. The main advantage is to avoid attributes in 

greater numeric ranges dominate those in smaller numeric ranges. Another advantage is 

to avoid numerical difficulties during the calculation. Because kernel values usually 

depend on the inner products of feature vectors large attribute values might cause 

numerical problems.  

The linearly scaling for this study is to the range [−1, +1] for each attribute. 

3. Consider Kernel Function. There are four common kernels in Libsvm. For this 

investigation, radial basis function (RBF) kernel 
2

( , ) i nx x
i nk x x e γ− −=  is used. The RBF 

kernel is used because nonlinearly maps samples into a higher dimensional space, the 

number of hyperparameters which influences the complexity of model selection (for 

example: The polynomial kernel has more hyperparameters than the RBF kernel), the 

RBF kernel has less numerical difficulties and can be used for every types of SVM and 

under every parameters. 

4. Cross-validation and grid search. There are three parameter C, γ, ε to train the whole 

training set. It is not known beforehand which C and γ are the best for one problem; 

consequently some kind of model selection (parameter search) must be done. The goal is 

to identify good (C, γ) so that the regression can accurately predict unknown data (i.e., 

testing data). 

In v-fold cross-validation, we first divide the training set into v subsets of equal size. 

Sequentially one subset is tested using the classifier trained on the remaining v − 1 

subsets. Thus, each instance of the whole training set is predicted once so the cross-

validation accuracy is the percentage of data which are correctly classified. The cross-

validation procedure can prevent the overfitting problem. 

For this study, the whole training data are divided into 10 set of equal size data. A “grid-

search” on C, γ, ε using cross-validation is used also in this study. 

5. Use the best parameter C, γ, ε to train the whole training set. 

6. Test. 
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8. ANALYSIS RESULTS 

 The AANs model developed in this research is used to predict the shear strengths of 

the 35 RC specimens with the 140 RC specimens as training data. With that model, the 

predicted data have root mean square error (RMSE) = 1.1329 as can be seen in Table 1. The 

second generation (ε-SVR) of SVMs in regression are used to analyze the RC specimens. 

The SVM model developed in this research is used to predict the shear strengths of the 35 

RC specimens with the 140 RC specimens as training data.  

 By using cross validation and grid search in Libsvm, the model can be able to learn 

the best value of C, γ, and ε. It is found that the best C value equal to 0.0625, the best γ value 

equal to 0.13149, and the best ε value equal to 0.2. By using those values, the cross 

validation and grid search minimize the training error, hence, the cross validation error mean 

square error reach 1.68. 

 The model is tested by predicting 35 RC specimens using svmpredict. The model 

use 87 numbers of data as SVs and 72 numbers of data as BSVs. With that model, the 

predicted data have root mean square error (RMSE) = 1.2265 as can be seen in Table 1. The 

ratio of SVM predicted shear strength to the experimental shear strength of each RC beam is 

given in Table 2. By using the ε-SVR, the average value of these ratios is 1.012. 

 

Table 1. Root Mean Squares Error Values of Experimental  
to Predict Shear Strength 

Method used RMSE 
ANN 1.1329 
SVM 1.2265 

 

The verification performance statistics, root mean square error (RMSE), is used to 

compare the AAN with SVM like in Table 1. RMSE statistics provide a general illustration 

of the overall accuracy of the predictions as they show the global goodness of fit. From the 

RMSE value, model with ANN provide a better general illustration of the overall accuracy of 

the predictions than model using SVMs. 

The average value or mean and standard deviation of the experimental to predicted 

shear strength ratios of the data are used to verify the performance of all three models. The 

results can be seen in Table 2. Standard deviation is used to measure how spreads out the 

values in a data set are. More precisely, it is a measure of the average distance of the data 

values from their mean. If the data points are all close to the mean, then the standard 
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deviation is low (closer to zero). In other hand, if many data points are very different from 

the mean, then the standard deviation is high (further from zero).  

The SVM model developed in this study is used to predict the shear strength of the 

35 RC beams. The ratio of SVM, ANN and ACI predicted shear strength to the experimental 

shear strength is given in Table A2 Appendix A. The mean value and standard deviation of 

the ratios predicted to experimental shear strength values for each method (only for testing 

data) also given in Table 2. From this table, we can see that the mean value of the ratios of 

predicted to experimental shear strength values of  the testing data is 0.98 in ACI method, 

1.083 in ANN method and 1.012 by using SVM. It means that SVMs method can predict the 

shear strength of the RC beams much better than the ACI building code method and the 

ANN method. 

 

Table 2. Mean and COV Values of Experimental to Predict Shear Strength 

  
Method used Mean Std Dev 

ACI 0.829 0.367 
ANN 1.083 0.314 
SVM 1.012 0.310 

 

 

 

The SVM shear strength results as well as those obtained from ACI method and 

ANN method are shown in Fig. 4(a)-(c). It shows the predicted shear strength versus the 

experimental shear strength of the RC beams (only for testing data) for each method. The 

predicted results using the ACI building code method is seems to underestimate the observed 

shear strength of the RC beams as shown in Fig. 4(a), while the ANN model tends to predict 

the shear strength better than the ACI building code. It is shown in Fig. 4(b) that the 

observed shear strength of RC beams has variations on both side of the regression line, 

overestimate side and underestimate side. The predicted results using SVM model exhibit 

approximately the same trend for RC beams as the ANN model, but perform a little bit better 

than ANN model. It is shown by the mean value of the ratios of predicted to experimental 

shear strength value of the testing data in SVM method is smaller than in ANN method (Fig. 

4(c)). 

The SVM has the lowest standard deviation value and ACI has the biggest standard 

deviation value from the other model. That means the range predicted data to experimental 

data in ACI have very spreads out values in a data set than the other model. The result is 

shown in Table 2. From Fig. 4(a)-(c), the variation of all model data are very big. This 

phenomena is not good, the variation of predicted value to experimental value should be 
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minimum. By using machine learning, the more training data, the more system can learn the 

performance of the data set. Therefore, to get the better prediction results, more data should 

be collected for training data. 
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(a) ACI (Mean=0.98) (b) ANN (Mean=1.083) 

 
(c) ε-SVR (Mean=1.012) 

Fig. 4. Comparison of Predicted Shear Strengths versus  
Experimental Shear Strengths Using Various Methods 

 

In overall, the performance of ANN and SVM is approximately the same and it 

predicted the shear strength value more accurately than ACI-05. Therefore, the SVMs can be 

used to predict the shear strength of RC beams with the transverse reinforcements.  

By comparing the elapse time in both ANNs model and SVMs model, the 

performance of SVMs is much better than ANNs model. ANNs model needs 2 seconds to 

finish running the single input parameter of ANNs model (without cross validation error), 

while the SVMs model only need 0.77 seconds to finish the prediction without cross 

validation.  The SVM exhibits inherent advantages due to its use of the structural risk 
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minimization principle in formulating cost functions and of quadratic programming during 

model optimization. These advantages lead to a unique optimal and global solution 

compared to conventional neural network models. 

 

9. CONCLUSION 

The study conducted in this paper shows the feasibility of using support vector 

regression to predict the ultimate shear strengths of RC beams with transverse 

reinforcements. After learning from a set of selected training data, involving the shear 

strengths of transversely reinforced RC beams collected from the technical literature, the 

SVM model is used to successfully predict the shear strengths of the test data within the 

range of input parameters being investigated. Applying the SVM model to predict the shear 

strengths of RC beams with input parameters outside the range over which the model was 

trained does not guarantee adequate strength predictions. In such a case, more data should be 

collected to increase the range of input parameters needed to cover the domain of interest. 

In this paper, the shear strength prediction by using three methods empirical 

equations, building codes from ACI-05, and machine learning techniques, ANN and SVMs, 

have been reviewed. It is found that the strength values obtained from SVM are more 

accurate than those obtained from design codes’ empirical equations. The success of the 

SVMs model in predicting the shear strength of RC beams, within the input parameters used 

to train the model, rather than costly experimental investigation. 

SVM training consists of solving a—uniquely solvable— quadratic optimization 

problem, unlike ANN training, which requires a nonlinear optimization with the possibility 

of converging only on local minima. Since the SVM is largely characterized by the type of 

its kernel function, it is necessary to choose the appropriate kernel for each particular 

application problem in order to guarantee satisfactory results. 

The machine learning regression approach for shear strength prediction of RC beams 

with transverse reinforcements has also been demonstrated to provide a good alternative to 

the traditional use of conceptual modes. In particular, SVMs were found to generalize better 

by giving a more accurate prediction of runoff on test data. 

Despite SVM’s encouraging performance in this and other similar studies, several 

aspects still remain to be addressed. For example, determining the proper parameters C and ε 

are still a heuristic process, and automation of this process could be beneficial. The other 

limitations are those of computational speed and the maximum possible size of the training 

set relative to the available computer memory resource. But in general, SVMs provide an 
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attractive approach to data modeling and have started to enjoy increasing popularity in the 

machine learning and computer-vision research communities. 

This paper shows SVM potential as an alternative model induction technique for 

applications in civil engineering, especially in shear strength RC beams with transverse 

reinforcements. 
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APPENDIX 

Table A1. Data of Experimental Shear Strength 
 

Beam  b d f'c fdy fty a/d ρ(long) ρ(tran) L/d vu-exp Code 
  (mm) (mm) (MPa) (MPa) (MPa)   (%) (%)   (MPa)  * 

A2 178 381 29 515 357 2.50 3.81 0.19 5.0 4.57 V 

E2A2(3-2) 152 318 19 305 345 2.23 2.67 0.37 8.2 3.11 V 

R16 152 254 31 618 279 3.60 4.16 0.41 7.2 3.61 V 

T13 152 272 13 618 269 3.36 1.46 0.21 6.7 6.74 V 

D5-2 152 315 29 321 331 2.43 3.42 0.37 9.7 3.28 V 

B2-1 203 390 23 321 331 1.95 3.10 0.73 4.7 3.80 V 

B-120-030 200 352 35 931 1062 2.27 3.09 0.30 4.5 3.63 V 

B-30-121 200 352 32 931 285 2.27 3.09 1.21 4.5 4.24 V 

D4-3 152 315 22 321 331 2.43 3.42 0.49 9.7 3.45 V 

G3 178 381 26 515 454 2.50 3.81 0.42 5.0 5.73 V 

C3H2(2-6) 152 315 20 410 316 2.06 2.69 0.89 8.2 4.63 V 

2-V1/4(2) 140 464 33 329 378 1.75 3.99 0.27 5.3 4.62 V 

C2 178 381 28 515 357 4.25 3.81 0.19 8.5 5.98 V 

B-1 231 461 25 555 325 3.94 2.43 0.15 7.9 2.09 V 

1a-V3/8(14) 140 495 23 329 357 1.64 3.99 0.27 4.9 3.75 V 

IID-2(13) 178 306 38 602 526 2.99 2.47 0.24 6.0 5.62 V 

R14 152 272 29 618 269 3.36 1.46 0.14 6.7 2.16 V 

G5 178 381 26 515 454 2.50 3.81 1.05 5.0 5.83 V 

S10-M-2.0-36-40-1 200 336 29 854 830 2.38 2.88 0.40 4.8 3.07 V 

E5 178 381 17 515 343 2.50 3.81 1.26 5.0 3.82 V 

C305DO(5) 150 315 33 361 355 3.00 2.61 0.24 6.0 2.28 V 

B-360-7.4 180 340 38 798 1422 1.76 3.16 0.44 3.5 4.49 V 

T32 152 254 28 618 269 3.60 4.16 0.83 7.2 7.55 V 

IIC-2(12) 178 310 38 576 526 2.96 4.38 0.24 5.9 4.90 V 

B-1.5-110 200 352 35 931 841 2.27 3.09 0.58 4.5 2.58 V 

B-360-4.1 180 340 38 798 1392 1.76 3.16 0.15 3.5 4.01 V 

360-1.18 200 336 37 947 728 1.79 2.88 1.18 3.6 2.78 V 

D2-6 152 315 30 321 331 2.43 3.42 0.61 9.7 3.52 V 

J3 178 381 30 515 343 2.50 3.81 0.42 5.0 6.30 V 

T9 152 254 20 618 279 3.60 4.16 0.41 7.2 7.50 V 

360-0.89 200 336 37 947 728 1.79 2.88 0.89 3.6 2.48 V 

R28 152 254 31 618 269 3.60 4.16 0.83 7.2 4.63 V 

B-80-058S 200 352 34 931 841 2.27 3.09 0.58 4.5 2.34 V 

B-120-059 200 352 35 931 1061 2.27 3.09 0.59 4.5 2.69 V 

C2H1(3-8) 152 311 22 404 352 2.27 2.72 0.82 8.3 3.86 V 

C4S3.0 220 244 42 402 358 3.00 3.60 0.22 6.0 3.47 T 

A5 178 381 26 515 343 2.50 3.81 1.26 5.0 4.94 T 

B-80-046 200 352 34 931 901 2.27 3.09 0.46 4.5 4.73 T 

IV-o(34) 178 305 24 312 327 2.00 4.76 1.47 4.0 3.43 T 

E4 178 381 13 515 343 2.50 3.81 0.79 5.0 8.33 T 

D5-3 152 315 27 321 331 2.43 3.42 0.37 9.7 3.28 T 

(2)-5 180 340 32 368 1324 1.76 3.21 0.28 3.5 4.89 T 

(4)-9 180 340 20 795 1353 1.76 3.21 0.37 3.5 2.17 T 

(2)-4 180 340 32 368 250 1.76 3.21 0.28 3.5 4.52 T 
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Table A1.(continued) 

B-80-022S 200 352 34 931 824 2.27 3.09 0.22 4.5 4.01 T 

E2A3(3-3) 152 316 20 325 349 2.24 2.68 0.37 8.2 4.70 T 

(4)-3 180 340 20 795 1275 1.76 3.21 0.12 3.5 2.09 T 

B-30-046 200 352 33 931 349 2.27 3.09 0.46 4.5 3.34 T 

(3)-4 200 336 23 1028 723 1.79 2.88 1.18 3.6 3.99 T 

J5 178 381 32 515 343 2.50 3.81 1.26 5.0 3.85 T 

B-150.019 200 352 35 931 1235 2.27 3.09 0.19 4.5 2.67 T 

T11 152 254 37 618 279 3.60 4.16 0.41 7.2 4.60 T 

C-2 152 464 24 555 325 4.93 3.66 0.20 9.8 2.30 T 

210-0.40 200 336 23 1028 683 1.79 2.88 0.40 3.6 4.28 T 

B-360-6.0 180 340 38 798 1333 1.76 3.16 0.31 3.5 5.29 T 

A-2 305 464 24 555 325 4.93 2.28 0.10 9.9 1.73 T 

(2)-11 180 340 32 368 255 1.76 3.21 0.75 3.5 2.64 T 

C3H1(2-5) 200 352 33 931 866 2.27 3.09 0.19 4.5 2.96 T 

B-60-030 200 352 33 931 492 2.27 3.09 0.30 4.5 4.49 T 

T36 152 254 24 618 279 3.60 4.16 0.41 7.2 5.51 T 

T34 152 254 34 618 269 5.40 4.16 0.21 10.8 4.03 T 

1a-V1/4(13) 140 495 24 329 316 1.64 3.99 0.27 4.9 3.39 T 

(4)-18 180 360 20 815 1275 1.76 0.61 0.12 3.3 5.58 T 

A1-1 203 390 25 321 331 2.35 3.10 0.38 4.7 2.80 T 

A3 178 381 30 515 343 2.50 3.81 0.42 5.0 5.26 T 

T10 152 272 28 618 269 3.36 1.46 0.14 6.7 7.21 T 

R8 152 272 27 618 269 3.36 1.46 0.21 6.7 1.92 T 

B-120-121 200 352 35 931 1066 2.27 3.09 1.21 4.5 2.46 T 

A4 178 381 28 515 343 2.50 3.81 0.79 5.0 5.82 T 

T15 152 254 33 618 269 7.20 4.16 0.21 14.4 4.43 T 

(3)-4 180 340 28 343 329 2.35 3.21 0.26 4.7 3.99 T 

E2H2(3-7) 152 309 20 412 361 2.29 2.74 0.52 8.4 3.31 T 

D4-1 203 390 23 321 331 1.95 3.10 0.37 4.7 3.51 T 

E3H2(2-4) 152 326 25 395 314 1.99 2.60 0.89 7.9 2.90 T 

S10-M-2.0-39-59-1 200 336 33 854 830 2.38 2.88 0.59 4.8 4.09 T 

(4)-12 180 340 20 795 274 1.76 3.21 0.59 3.5 2.70 T 

(2)-7 180 340 32 368 250 1.76 3.21 0.56 3.5 6.29 T 

T19 152 254 30 618 269 5.40 4.16 0.21 10.8 6.24 T 

T12 152 254 31 618 269 3.60 4.16 0.21 7.2 5.49 T 

C2A2(3-5) 152 311 21 309 347 2.27 2.72 0.37 8.3 2.06 T 

D4-1 152 315 27 321 331 2.43 3.42 0.49 9.7 3.51 T 

(4)-16 200 336 21 854 830 2.38 2.88 0.89 4.8 2.93 T 

B-360-5.1 180 340 38 798 1422 1.76 3.16 0.23 3.5 4.41 T 

B1-2 203 390 25 321 331 1.95 3.10 0.37 4.7 3.23 T 

B-360-11.0 180 340 20 798 1333 1.76 3.16 0.31 3.5 3.04 T 

S10-M-2.0-36-89-1 152 254 33 618 269 7.20 4.16 0.14 14.4 4.00 T 

(4)-10 180 340 20 795 285 1.76 3.21 0.26 3.5 5.66 T 

B-80-121 200 352 34 931 898 2.27 3.09 1.21 4.5 3.82 T 

R14 152 272 26 618 269 3.36 1.95 0.21 6.7 2.16 T 

(3)-2 180 340 28 343 329 2.35 3.21 0.19 4.7 3.22 T 

210-0.89 200 336 23 1028 723 1.79 2.88 0.89 3.6 5.69 T 

D5-3 152 315 28 321 331 2.43 3.42 0.61 9.7 3.28 T 
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Table A1.(continued) 

A1-4 203 390 25 321 331 2.35 3.10 0.38 4.7 3.08 T 

D5-3 152 315 26 321 331 2.43 3.42 0.49 9.7 3.28 T 

B-1.5-022 200 352 35 931 824 2.27 3.09 0.22 4.5 2.05 T 

T7 152 264 27 618 269 3.46 3.00 0.21 6.9 5.94 T 

B-360-11.0 203 390 25 321 331 1.95 3.10 0.37 4.7 3.04 T 

A-1 307 466 24 555 325 3.94 1.80 0.10 7.8 1.63 T 

210-0.59 200 336 23 1028 723 1.79 2.88 0.59 3.6 5.03 T 

C4S3.5 220 244 42 402 358 3.50 3.60 0.22 7.0 3.05 T 

B-120-019 200 352 35 931 1062 2.27 3.09 0.19 4.5 3.94 T 

(2)-15 180 340 32 368 674 1.76 3.21 0.29 3.5 2.72 T 

D1-8 152 315 28 321 331 1.94 3.42 0.46 7.8 3.88 T 

T6 152 254 26 618 269 3.60 4.16 0.83 7.2 5.36 T 

C4S3.5 152 315 28 321 331 2.43 3.42 0.37 9.7 3.05 T 

B-360-11.0 180 340 38 798 1431 1.76 3.16 1.00 3.5 3.04 T 

B-80-059 200 352 33 931 554 2.27 3.09 0.59 4.5 5.12 T 

C3-1 203 390 14 321 331 1.56 2.07 0.34 4.7 2.82 T 

(4)-12 152 254 31 618 269 3.60 4.10 0.21 7.2 2.70 T 

C210DOA(3) 150 315 34 361 355 2.00 2.61 0.47 6.0 3.45 T 

(2)-3 180 340 32 368 250 1.76 3.21 0.28 3.5 3.69 T 

B-1.5-110 200 352 36 931 803 2.27 3.09 1.10 4.5 3.21 T 

S10-M-2.0-36-89-1 200 336 29 854 830 2.38 2.88 0.89 4.8 4.00 T 

S10-M-2.0-21-40-1 200 336 20 854 830 2.38 2.88 0.40 4.8 2.91 T 

B-360-9.2 180 340 38 798 1402 1.76 3.16 0.71 3.5 2.40 T 

(4)-7 180 340 20 795 1262 1.76 3.21 0.26 3.5 3.73 T 

IA-2R(17) 178 306 18 602 526 2.99 2.47 0.24 6.0 4.64 T 

(3)-4 140 464 24 329 378 1.75 3.99 0.27 5.3 3.99 T 

G4 178 381 27 515 454 2.50 3.81 0.63 5.0 3.54 T 

C4S2.0 220 264 42 402 358 2.00 2.67 0.32 4.0 3.75 T 

IC-2R(19) 178 310 34 576 526 2.95 4.38 0.24 5.9 5.11 T 

IIA-2(9) 178 306 18 602 526 2.99 2.47 0.24 6.0 3.78 T 

B-120-019 178 381 28 515 343 2.50 3.81 0.42 5.0 3.94 T 

D4-1 152 315 26 321 331 2.43 3.42 0.61 9.7 3.51 T 

(4)-16 180 360 20 795 1275 1.76 1.20 0.12 3.3 2.93 T 

B-2 229 466 23 555 325 4.91 2.43 0.15 9.8 1.88 T 

T35 152 254 34 618 269 5.40 4.16 0.21 10.8 4.33 T 

(4)-14 180 340 20 795 258 1.76 3.21 0.83 3.5 2.39 T 

210-0.19 200 336 23 1028 683 1.79 2.88 0.19 3.6 2.85 T 

C3-2 203 390 14 321 331 1.56 2.07 0.34 4.7 2.53 T 

R24 152 254 31 618 269 5.05 4.16 0.21 10.1 2.38 T 

D1-7 152 315 28 321 331 1.94 3.42 0.46 7.8 3.74 T 

IV-n(333) 178 305 23 312 314 2.00 4.76 0.95 4.0 7.66 T 

(2)-8 180 340 32 368 250 1.76 3.21 0.56 3.5 4.68 T 

IC-2(5) 178 310 34 576 526 2.95 4.38 0.24 5.9 6.79 T 

E3 178 381 14 515 343 2.50 3.81 0.42 5.0 7.52 T 

E2A1(3-1) 152 318 25 313 345 2.23 2.67 0.37 8.2 5.41 T 

2-V3/8(8) 140 464 28 329 329 1.75 3.99 0.27 5.3 4.91 T 

T37 152 254 32 618 269 3.60 4.16 0.83 7.2 4.97 T 

C2H2(3-9) 152 325 25 399 356 2.17 2.60 0.52 8.0 6.37 T 
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Table A1.(continued) 

B1-3 203 390 24 321 331 1.95 3.10 0.37 4.7 3.59 T 

210-0.89 178 381 28 515 343 3.38 3.81 0.42 6.8 5.69 T 

IA-2(2) 178 306 18 602 526 2.99 2.47 0.24 6.0 6.55 T 

B-60-030 180 340 38 798 1422 1.76 3.16 0.44 3.5 4.49 T 

C3H1(2-5) 152 316 20 412 316 2.05 2.68 1.11 8.2 2.96 T 

D1-6 152 315 28 321 331 1.94 3.42 0.46 7.8 3.65 T 

C205D10(2) 150 315 30 387 355 2.00 2.08 0.24 6.0 2.59 T 

S10-M-2.0-21-40-1 150 315 29 361 355 2.00 2.61 0.24 6.0 2.91 T 

(3)-2 200 352 34 931 803 2.27 3.09 1.10 4.5 3.22 T 

(2)-11 203 390 24 321 331 2.35 3.10 0.38 4.7 2.64 T 

(4)-9 155 464 30 555 325 3.94 1.80 0.20 7.9 2.17 T 

B-120-019 178 306 34 602 526 2.99 2.47 0.24 6.0 3.94 T 

C3-3 203 390 14 321 331 1.56 2.07 0.34 4.7 2.37 T 

C4S4.0 220 244 42 436 358 4.00 3.60 0.22 8.0 2.65 T 

E2H1(3-6) 152 324 21 400 347 2.18 2.61 0.82 8.0 3.30 T 

T4 203 390 24 321 331 1.56 3.10 0.34 4.7 3.90 T 

A1-3 203 390 23 321 331 2.35 3.10 0.38 4.7 2.81 T 

360-0.19 200 336 37 947 679 1.79 2.88 0.19 3.6 2.55 T 

B1-4 203 390 23 321 331 1.95 3.10 0.37 4.7 3.37 T 

B-80-022S 180 340 20 798 1431 1.76 3.16 1.00 3.5 4.01 T 

B-210-7.4 180 340 20 798 1422 1.76 3.16 0.44 3.5 4.81 T 

S10-M-2.0-21-59-1 200 336 20 854 830 2.38 2.88 0.59 4.8 3.13 T 

B-210-9.5 180 340 20 798 1402 1.76 3.16 0.71 3.5 5.35 T 

C2A1(3-4) 152 318 23 304 353 2.23 2.67 0.37 8.2 2.52 T 

R16 152 254 30 618 279 3.60 4.16 0.41 7.2 3.61 T 

T4 152 272 32 618 269 3.36 1.95 0.21 6.7 3.90 T 

(4)-5 180 340 20 795 1238 1.76 3.21 0.19 3.5 4.14 T 

T8 152 254 31 618 269 3.60 4.16 0.21 7.2 6.57 T 

R12 152 254 34 618 269 3.60 4.16 0.21 7.2 2.83 T 

(2)-13 180 340 32 368 255 1.76 3.21 1.13 3.5 5.28 T 

IIB-2(10) 178 308 17 581 526 2.97 1.41 0.24 5.9 4.77 T 

C1-3 203 390 24 321 331 1.56 2.07 0.34 4.7 3.10 T 

B-80-059 200 352 34 931 901 2.27 3.09 0.59 4.5 1.89 T 

T14 152 254 33 618 269 3.60 4.16 0.83 7.2 7.68 T 

C204-S0(30) 150 315 21 358 353 2.00 2.61 0.24 4.0 6.87 T 

 

Table A2. Input data and prediction shear strength  

to experimental shear strength ratio 

Beam b 
(mm) 

d 
(mm) 

f'c 
(MPa) 

fdy 
(MPa)

fty 
(MPa) a/d ρ(long) 

(%) 
ρ(tran) 

(%) L/d

Actual 
Value     

(vu-exp) 
(MPa) 

ACI /  
Actual 

ANN / 
Actual 

ε-
SVR/  

Actual 

ν-
SVR/  

Actual

A2 178 381 29 515 357 2.5 3.81 0.19 5.0 4.57 0.79 1.03 0.89 0.90 
E2A2(3-2) 152 318 19 305 345 2.23 2.67 0.37 8.2 3.11 0.93 1.16 1.05 1.06 

R16 152 254 31 618 279 3.6 4.16 0.41 7.2 3.61 1.03 1.47 1.33 1.37 
T13 152 272 13 618 269 3.36 1.46 0.21 6.7 6.74 0.36 0.72 0.53 0.56 
D5-2 152 315 29 321 331 2.43 3.42 0.37 9.7 3.28 1.10 1.02 1.05 1.04 
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Table A2.(continued) 
B2-1 203 390 23 321 331 1.95 3.1 0.73 4.7 3.8 0.84 0.95 0.89 0.90 

B-120-030 200 352 35 931 1062 2.27 3.09 0.3 4.5 3.63 1.09 0.90 1.03 1.01 
B-30-121 200 352 32 931 285 2.27 3.09 1.21 4.5 4.24 0.89 1.07 0.92 0.91 

D4-3 152 315 22 321 331 2.43 3.42 0.49 9.7 3.45 0.91 1.11 1.01 1.02 
G3 178 381 26 515 454 2.5 3.81 0.42 5.0 5.73 0.59 0.84 0.72 0.74 

C3H2(2-6) 152 315 20 410 316 2.06 2.69 0.89 8.2 4.63 0.64 0.82 0.75 0.76 

2-V1/4(2) 140 464 33 329 378 1.75 3.99 0.27 5.3 4.62 0.83 0.84 0.81 0.81 
C2 178 381 28 515 357 4.25 3.81 0.19 8.5 5.98 0.59 0.70 0.60 0.61 
B-1 231 461 25 555 325 3.94 2.43 0.15 7.9 2.09 1.60 1.19 1.07 1.09 

1a-V3/8(14) 140 495 23 329 357 1.64 3.99 0.27 4.9 3.75 0.85 1.12 0.96 0.97 

IID-2(13) 178 306 38 602 526 2.99 2.47 0.24 6.0 5.62 0.73 0.62 0.65 0.64 
R14 152 272 29 618 269 3.36 1.46 0.14 6.7 2.16 1.66 1.91 1.63 1.63 
G5 178 381 26 515 454 2.5 3.81 1.05 5.0 5.83 0.58 0.86 0.71 0.72 

S10-M-2.0-
36-40-1 200 336 29 854 830 2.38 2.88 0.4 4.8 3.07 1.17 1.16 1.25 1.24 

E5 178 381 17 515 343 2.5 3.81 1.26 5.0 3.82 0.72 1.45 1.05 1.10 
C305DO(5) 150 315 33 361 355 3 2.61 0.24 6.0 2.28 1.68 1.90 1.58 1.56 
B-360-7.4 180 340 38 798 1422 1.76 3.16 0.44 3.5 4.49 0.92 0.84 0.87 0.86 

T32 152 254 28 618 269 3.6 4.16 0.83 7.2 7.55 0.47 0.75 0.64 0.67 
IIC-2(12) 178 310 38 576 526 2.96 4.38 0.24 5.9 4.9 0.84 1.02 0.91 0.92 
B-1.5-110 200 352 35 931 841 2.27 3.09 0.58 4.5 2.58 1.53 1.34 1.47 1.44 
B-360-4.1 180 340 38 798 1392 1.76 3.16 0.15 3.5 4.01 1.03 0.95 0.98 0.98 
360-1.18 200 336 37 947 728 1.79 2.88 1.18 3.6 2.78 1.46 1.32 1.32 1.27 

D2-6 152 315 30 321 331 2.43 3.42 0.61 9.7 3.52 1.04 0.98 0.99 0.98 

J3 178 381 30 515 343 2.5 3.81 0.42 5.0 6.3 0.58 0.76 0.65 0.67 
T9 152 254 20 618 279 3.6 4.16 0.41 7.2 7.5 0.40 0.74 0.65 0.69 

360-0.89 200 336 37 947 728 1.79 2.88 0.89 3.6 2.48 1.64 1.46 1.53 1.48 
R28 152 254 31 618 269 3.6 4.16 0.83 7.2 4.63 0.80 1.21 1.03 1.07 

B-80-058S 200 352 34 931 841 2.27 3.09 0.58 4.5 2.34 1.66 1.49 1.63 1.59 
B-120-059 200 352 35 931 1061 2.27 3.09 0.59 4.5 2.69 1.47 1.23 1.38 1.34 
C2H1(3-8) 152 311 22 404 352 2.27 2.72 0.82 8.3 3.86 0.81 0.98 0.91 0.92 

          Mean 0.98 1.08 1.01 1.01 
          Std dev 0.39 0.31 0.31 0.30 
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